随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
鸿蒙操作系统(HarmonyOS)上的日志服务(SLS)SDK 提供了针对 IoT、移动端到服务端的全场景日志采集、处理和分析能力,旨在满足万物互联时代下应用的多元化设备接入、高效协同和安全可靠运行的需求。
今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。
              从 2008 年开始,我陆陆续续参与了多个 DevOps 系统的建设,如今,审视这些系统的建设初衷和它们的设计思路或遇到的问题,依然有不少借鉴意义。我会按照时间顺序,把每个 DevOps 系统的特点,诞生的背景,以及在当时所主要解决的问题做一个概要的介绍,同时,我们也会以今天的视角再次审视这些问题,来看下同样的问题,经过十几年的发展,解决方案上有哪些不同。