官方博客-第34页-阿里云开发者社区

  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 2024-05-15
    3124

    智能客服对话系统解决方案

    针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。

    3,124
  • 2024-05-15
    529

    基于图数据库搭建企业级的推荐类系统

    本文为您介绍基于专有云敏捷版数据库场景DBStack和图数据库搭建企业级推荐类系统。

    529
  • 2024-05-15
    629

    真·异地多活架构的实现用PolarDB-X

    今天我们这篇文章重点来说一下,对于一个分布式数据库,在异地多活架构中,起到了一个什么样的角色;对于其中的问题,解法是什么。

    629
  • 2024-05-15
    1160

    阿里妈妈展示广告引擎新探索:迈向全局最优算力分配

    在绿色计算的大背景下,算力分配将朝着更加高效和智能的方向持续演进。本文将介绍阿里妈妈展示广告引擎在全局视角下优化算力分配的新探索,让在线引擎像变形金刚一样灵活强悍。算力在提倡节能减排,降本增效,追求绿色技术的大趋势下,充分利用好算力资源,尤其是在阿里妈妈展示广告引擎这种使用近百万core机器资源的业...

  • 2024-05-15
    726

    图像检索解决方案

    针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。

    726
  • 2024-05-15
    457

    PolarDB 开源版 使用pgpool-II实现透明读写分离

    背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用pgpool-II实现透明读写分离.pgpoo...

    457
  • 2024-05-15
    762

    PolarDB-X 与 DRDS 的区别

    PolarDB-X 2.0(以下简称PolarDB-X)与DRDS(DRDS也称为PolarDB-X 1.0)都是阿里云上的分布式数据库产品。看起来她们都是Share-Nothing的架构,用水平扩展来解决单机数据库瓶颈问题。很多同学因此会有疑惑,她们俩到底有什么样的区别?

    762
  • 2024-05-15
    476

    PolarDB-X 热点优化系列 (二):如何支持淘宝大卖家分区热点

    本文重点介绍分布式数据库下分区读写热点的相关优化。

    476
  • 1
    ...
    33
    34
    35
    ...
    40
    到第