官方博客-第40页-阿里云开发者社区

  • AI大模型运维开发探索第五篇:GitOps 智能体

    本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。

  • 225

    大模型终于能“听懂”云操作了?

    本文通过 MCP Server 和大模型的结合,实现云产品管理的自然语言操作,极大提升开发者的操作效率和用户体验。

    225
  • LoongCollector:构建智能时代的数据采集新范式

    本文聚焦 LoongSuite 生态核心组件 LoongCollector,深度解析 LoongCollector 在智算服务中的技术突破,涵盖多租户观测隔离、GPU 集群性能追踪及事件驱动型数据管道设计,通过零侵入采集、智能预处理与自适应扩缩容机制,构建面向云原生 AI 场景的全栈可观测性基础设施,重新定义高并发、强异构环境下的可观测性能力边界。

  • 2024-05-15
    472

    真·异地多活架构的实现用PolarDB-X

    今天我们这篇文章重点来说一下,对于一个分布式数据库,在异地多活架构中,起到了一个什么样的角色;对于其中的问题,解法是什么。

    472
  • 2024-05-15
    1409

    一文理解淘宝购物车背后的逻辑

    提升用户的使用体验才是产品升级的核心,本文将从业务发展以及技术沉淀两个方面来总结淘宝购物车的产品升级之路。

  • 2024-05-15
    768

    ADBPG优化基础(一)ORCA优化器

    AnalyticDB PostgreSQL(ADBPG)就是一堆并行的PostgreSQL?当然不是!ADBPG作为一个基于PostgreSQL的Massively Parallel Processing(MPP)全并行架构的分析型数据库,针对数据分析场景在很多方面得到了加强。如双优化器(GPORC...

    768
  • 2024-05-15
    520

    泛娱乐直播平台的数据库选型和场景解决方案

    直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。

    520
  • 2024-05-15
    591

    Lindorm:时序数据“存、算、管、用”的最佳实践

    本文档介绍Lindorm时序引擎在时序数据的存储、计算、管理、应用上的最佳实践。

    591
  • 2024-05-15
    850

    基于云数据库ClickHouse 搭建游戏行业用户行为分析系统实践

    游戏行业用户流量的引入及长期留存和活跃是衡量游戏商业转化能力的必要条件和重要衡量指标。新游戏投放市场后通常会持续性进行运营推广和迭代优化,需要完善的运营体系来支撑运营。本文重点阐述如何使用云数据库 ClickHouse 作为核心数仓同步离线和实时数据来构建用户分析系统,以及如何通过用户分析系统来分析用户行为常用场景实践案例,指导游戏行业客户构建和使用行为分析系统,达到提高游戏用户留存率和活跃度的目标。

    850
  • 1
    ...
    39
    40
    41
    ...
    47
    到第