官方博客-第39页-阿里云开发者社区

  • 2024-05-15
    113318

    PolarDB-X最佳实践系列(三):如何实现高效的分页查询

    分页查询是数据库中常见的操作。本文将介绍,如何在数据库中(无论是单机还是分布式)高效的进行翻页操作。

  • 2024-09-14
    342

    使用通义灵码,参与开源项目全程纪实

    我借助通义灵码完成了 obdiag 项目的第一个 PR,成为了 obdiag 项目的 contributor,我知道通义灵码的能力还远没有发挥出来,今后继续探索,未来可期。

  • 从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent

    本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。

  • Agent Skills技术协议与开源实现,让大模型拥有“即插即用”技能

    Anthropic推出Agent Skills协议,通过模块化技能封装提升大模型智能体的专业能力。ModelScope开源项目MS-Agent已实现该协议,支持技能的动态加载、自主执行与安全沙箱运行,推动智能体能力的可组合与可扩展发展。

  • 2024-05-15
    3834

    实践教程之快速安装部署PolarDB-X

    PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。

    3,834
  • 2024-05-15
    1298

    基于云数据库ClickHouse 搭建游戏行业用户行为分析系统实践

    游戏行业用户流量的引入及长期留存和活跃是衡量游戏商业转化能力的必要条件和重要衡量指标。新游戏投放市场后通常会持续性进行运营推广和迭代优化,需要完善的运营体系来支撑运营。本文重点阐述如何使用云数据库 ClickHouse 作为核心数仓同步离线和实时数据来构建用户分析系统,以及如何通过用户分析系统来分析用户行为常用场景实践案例,指导游戏行业客户构建和使用行为分析系统,达到提高游戏用户留存率和活跃度的目标。

    1,298
  • 警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践

    本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。

  • 2024-05-15
    859

    泛娱乐直播平台的数据库选型和场景解决方案

    直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。

    859
  • 2024-05-15
    875

    统一观测丨使用 Prometheus 监控云原生网关,我们该关注哪些指标?

    MSE 云原生网关默认提供了丰富的 Metrics 指标大盘,配合阿里云 Prometheus 监控提供开箱即用的完整可观测性能力,能够帮助用户快捷、高效的搭建自身的微服务网关与对应的可观测体系。

    875
  • 1
    ...
    38
    39
    40
    ...
    48
    到第