Modelscope AgentFabric是一个基于ModelScope-Agent的交互式智能体应用,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。
本文以百炼官方文档问答助手为例,介绍如何基于百炼平台打造基于LlamaIndex的RAG文档问答产品。我们基于百炼平台的底座能力,以官方帮助文档为指定知识库,搭建了问答服务,支持钉钉、Web访问。介绍了相关技术方案和主要代码,供开发者参考。
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
本文第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。
文章介绍了GPT-Sovits,一个开源的生成式语音模型,因其在声音克隆上的高质量和简易性而受到关注。阿里云函数计算(Function Compute)提供了一个快速托管GPT-Sovits的方法,让用户无需管理服务器即可体验和部署该模型。通过函数计算,用户可以便捷地搭建基于GPT-Sovits的文本到语音服务,并享受到按需付费和弹性扩展的云服务优势。此外,文章还列举了GPT-Sovits在教育、游戏、新能源等多个领域的应用场景,并提供了详细的步骤指导,帮助用户在阿里云上部署和体验GPT-Sovits模型。
通义灵码在企业版里还引入了一个超酷的新技能:RAG(Retrieval-Augmented Generation)检索增强生成的能力,本文就跟大家分享下企业知识库能帮开发者做些什么。
通过使用“百炼”平台,您可以快速构建一个多代理(Multi-Agent)架构的智能导购助手。该助手能够通过多轮互动了解顾客的具体需求,收集详细信息后,利用“百炼”的知识检索增强功能或已有的商品数据库进行商品搜索,为顾客推荐最合适的产品。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。