在当今数字化时代,日志数据已成为企业 IT 运营和业务分析的关键资源。然而,随着业务规模的扩大和系统复杂度的提升,日志数据的体量呈现爆发式增长,给日志采集和处理系统带来了巨大挑战。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
Nydus+Dragonfly 组合减少容器启动过程中镜像的拉取时间,提升集群间的镜像分发效率。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
基于 Stable Diffusion Serverless API 解决方案搭建 AI 文字生成应用,支持并发出图。
本文介绍如何使用函数计算 GPU 实例闲置模式低成本、快速的部署 Google Gemma 模型服务。