本期文章,我们将向大家展示如何使用AgentScope中构建和使用具有RAG功能的智能体,创造AgentScope助手群,为大家解答和AgentScope相关的问题。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
日志内容本身是一种重要信息,日志之间的相对顺序也是因果关系的一种反映,某些场景下如果日志内容完全相同,但是日志间的顺序错乱了反映出来的结果可能和真实世界里面的事件完全相反。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。