官方博客-第16页-阿里云开发者社区

  • 9247

    基于RAG搭建企业级知识库在线问答

    本文介绍如何使用搜索开发工作台快速搭建基于RAG开发链路的知识库问答应用。

  • 2024-12-27
    1738

    极简开发,极速上线:构建端到端大模型应用

    本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。

    1,738
  • 2024-05-15
    102605

    大语言模型推理提速,TensorRT-LLM 高性能推理实践

    大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。

    102,605
  • 2025-01-06
    428

    OpenAI 宕机思考丨Kubernetes 复杂度带来的服务发现系统的风险和应对措施

    Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。

    428
  • 2025-02-06
    606

    详解智能编码在前端研发的创新应用

    接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。

    606
  • 2025-04-03
    960

    大模型上下文协议 MCP 带来了哪些货币化机会

    本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。

    960
  • 2025-05-12
    1175

    如何在通义灵码里使用 MCP 能力

    通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。

  • 2025-08-07
    424

    Function AI 助力用户自主开发 MCP 服务,一键上云高效部署

    在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。

  • 2024-05-15
    811

    资源编排ROS之模块:实现模板代码复用(进阶篇)

    资源编排ROS模块能够实现模板代码复用。支持输入输出、公共模块、版本管理、共享模块等功能。在使用场景上,除了对基础设施模块化外,还可作为配置、数据处理工具或资源包装器。

  • 1
    ...
    15
    16
    17
    ...
    33
    到第
    16/33