Dify是一款开源的大模型应用开发平台,支持通过可视化界面快速构建AI Agent和工作流。然而,Dify本身缺乏定时调度与监控报警功能,且执行记录过多可能影响性能。为解决这些问题,可采用Dify Schedule或XXL-JOB集成Dify工作流。Dify Schedule基于GitHub Actions实现定时调度,但仅支持公网部署、调度延时较大且配置复杂。相比之下,XXL-JOB提供秒级调度、内网安全防护、限流控制及企业级报警等优势,更适合大规模、高精度的调度需求。两者对比显示,XXL-JOB在功能性和易用性上更具竞争力。
阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。
本文介绍了MCP(Model Context Protocol)与Qwen3模型的结合应用。MCP通过统一协议让AI模型连接各种工具和数据源,类似AI世界的“USB-C”接口。文中详细解析了MCP架构,包括Host、Client和Server三个核心组件,并说明了模型如何智能选择工具及工具执行反馈机制。Qwen3作为新一代通义千问模型,采用混合专家架构,具备235B参数但仅需激活22B,支持快速与深度思考模式,多语言处理能力覆盖119种语言。文章还展示了Qwen3的本地部署流程,以及开发和调试MCP Server与Client的具体步骤。
本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。
本文介绍如何利用智能体与Python代码批量处理Excel中的脏数据,解决人工录入导致的格式混乱、逻辑错误等问题。通过构建具备数据校验、异常标记及自动修正功能的系统,将数小时的人工核查任务缩短至分钟级,大幅提升数据一致性和办公效率。
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。