简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
我已经是阿里云ECS产品的老用户了,阿里的云计算产品性能可靠性毋庸置疑,这次分享一个开源蜜罐系统Hfish的单节点搭建,并围绕ECS周边的技术功能做个简单举例。
通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
SDCon 全球软件技术大会上,阿里云通义灵码团队分享了关于 AI 辅助编码的最新研究与实践,随着 AIGC 技术的发展,软件研发领域将迎来智能化的新高度,助力 DevOps 流程优化,提升研发效率和研发幸福感。
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
研发规范的目标,是为了解决或降低出现软件危机的风险。但传统流水线受限于工具的定位,无法解决研发规范的落地问题,需要在更高的层面来解决。阿里云云效团队经过内部启发后推出的新产品:云效应用交付平台 AppStack 给出了解决方案,快来使用体验吧!