本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享
文章探讨了如何利用多模态大模型和工程优化手段提升物流理赔业务效率。核心方案包括:通过多模态RAG技术实现图片查重,结合异步调用方法优化货损识别功能。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
JSON 日志因灵活易扩展而广泛应用,但其海量数据也带来分析挑战。本文系统介绍阿里云日志服务(SLS)中处理 JSON 日志的最佳实践,涵盖数据预处理、索引配置、JSON 函数使用及 SQL 智能生成,助你高效挖掘日志价值。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
MySQL的内存分配、使用、管理的模块较多,本篇文章主要介绍InnoDB层和SQL层内存分配管理器,主要包括ut_allocator、mem_heap_allocator和MEM_ROOT,代码版本主要基于8.0.25。