本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
本文是[全景剖析容器网络数据链路]第一部分,主要介绍Kubernetes Flannel模式下,数据面链路的转转发链路
本文介绍了使用 OTel 官方 SDK 采集 Android、iOS Trace 数据实践。
针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。
本文介绍了基于阿里云 Function AI 和 Serverless 架构的 AI 编程解决方案 VibeCoding,展示其如何通过 AI 快速开发并上线小游戏及平台。方案支持普通与专家两种模式,用户可选择不同模型与数据库配置,具备良好的扩展性与交互体验,适合开发者与企业快速实现创意落地。
我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢。
本方案实现在阿里云Serverless函数计算服务中搭建图片批量打马赛克服务,具备自动将用户上传到OSS桶内的图片批量打上马赛克功能,实现用户敏感信息自动化处理。
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。