Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。
本次分享,主题是利用通义灵码提升前端研发效率。分享内容主要包括以下几部分:首先,我将从前端开发的角度介绍对通义灵码的基本认识;其次,我将展示通义灵码在日常研发中的应用案例;然后,我将通过实例说明,良好的设计能够显著提升通义灵码的效果。在第四个部分,我将介绍通义灵码的企业知识库以及如何利用 RAG 构建团队智能研发助手。最后,我将总结本次分享并展望未来方向。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
阿里云数据可视化产品DataV团队一直在三维交互领域进行前沿探索,为了解决LLMs与3D结合的问题,近期在虚幻引擎内结合通义千问大模型家族打造了一套基于LLM的实时可交互3D世界方案,通过自然语言来与引擎内的3D世界进行交互。
 
              本文介绍了为何需要WolframAlpha及其在解决大语言模型“幻觉”问题上的优势。大型语言模型如GPT-4虽在自然语言处理方面表现出色,但在科学与数学问题上常出错。WolframAlpha凭借其强大的计算能力和广泛的知识库,能准确处理复杂问题。Higress MCP市场已上线WolframAlpha LLM API,支持多种调用方式,并提供每月10次免费试用。配置流程包括获取API工具、安装Lobechat及配置Higress MCP插件。测试案例显示,WolframAlpha在数学推理、日常计算和图像绘制等方面表现优异,未来结合更多服务将推动AI技术发展。
我已经是阿里云ECS产品的老用户了,阿里的云计算产品性能可靠性毋庸置疑,这次分享一个开源蜜罐系统Hfish的单节点搭建,并围绕ECS周边的技术功能做个简单举例。
 
              用户画像在市场营销的应用重建中非常常见,已经不是什么新鲜的东西,比较流行的解决方案是给用户贴标签,根据标签的组合,圈出需要的用户。通常画像系统会用到宽表,以及分布式的系统。宽表的作用是存储标签,例如每列代表一个标签。但实际上这种设计不一定是最优或唯一的设计,本文将以PostgreSQL数据库为基础,给大家讲解一下更加另类的设计思路,并且看看效率如何。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。