官方博客-第4页-阿里云开发者社区

  • 2024-09-03
    1530

    速成RAG+Agent框架大模型应用搭建

    本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。

    1,530
  • 2025-05-22
    1796

    多快好省,Qwen3混合部署模式引爆MCP

    本文介绍了MCP(Model Context Protocol)与Qwen3模型的结合应用。MCP通过统一协议让AI模型连接各种工具和数据源,类似AI世界的“USB-C”接口。文中详细解析了MCP架构,包括Host、Client和Server三个核心组件,并说明了模型如何智能选择工具及工具执行反馈机制。Qwen3作为新一代通义千问模型,采用混合专家架构,具备235B参数但仅需激活22B,支持快速与深度思考模式,多语言处理能力覆盖119种语言。文章还展示了Qwen3的本地部署流程,以及开发和调试MCP Server与Client的具体步骤。

    1,796
  • 2025-04-11
    1131

    AI开源框架:让分布式系统调试不再"黑盒"

    Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。

  • 2024-05-15
    15145

    Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估

    Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。

    15,145
  • 2024-08-16
    16236

    RAG效果优化:高质量文档解析详解

    本文介绍了如何通过高质量的文档解析提升RAG系统整体的效果。

  • 2024-09-03
    3372

    【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享

    本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。

  • 2024-11-01
    1892

    探索LLM推理全阶段的JSON格式输出限制方法

    文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

    1,892
  • Post-Training on PAI (4):模型微调SFT、DPO、GRPO

    阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。

  • 2024-05-15
    78422

    通义千问API:让大模型使用各种工具

    本章我们将通过一个简单的例子,揭示基于LangChain的Agent开发的秘密,从而了解如何扩展大模型的能力。

    78,422
  • 1
    ...
    3
    4
    5
    ...
    35
    到第
    4/35