目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文主要介绍阿里云 Serverless 应用引擎如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道,让 2 人的研发团队享受 2000 人技术团队的红利。
本文总结了作者在日常/大促业务的“敏捷”开发过程中产生的疑惑,并尝试做出思考得到一些解决思路和方案。在前端开发和实践过程中,梳理了一些简单设计方案可以缓解当时 “头疼” 的几个敏捷迭代问题,并实践在项目迭代中。
本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。
阿里云通义灵码团队与重庆大学合作的研究论文被 FSE Industry 2024 (CCF A) 录用,该论文通过对阿里云开发的智能编码插件进行实证调查,主要探讨了在智能编码助手中的代码搜索问题,点击本文查看论文详解。
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。