在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。
              本文主要就Dubbo应用如何接入服务网格、获得各项云原生能力进行了探讨,并提出了最佳实践以及过渡两种实践场景。我们首先推荐您使用Dubbo社区提供的最佳实践场景来接入服务网格,在必要时可以通过过渡方案来向最佳实践方案逐步实现过渡。
从 2008 年开始,我陆陆续续参与了多个 DevOps 系统的建设,如今,审视这些系统的建设初衷和它们的设计思路或遇到的问题,依然有不少借鉴意义。我会按照时间顺序,把每个 DevOps 系统的特点,诞生的背景,以及在当时所主要解决的问题做一个概要的介绍,同时,我们也会以今天的视角再次审视这些问题,来看下同样的问题,经过十几年的发展,解决方案上有哪些不同。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。