本文介绍了Serverless的发展历程及SAE(Serverless Application Engine)产品。首先,回顾了云计算从物理机、虚拟机到容器化再到Serverless的演进过程,并解释了Serverless的核心特点:无需管理底层资源、自动弹性伸缩、聚焦业务价值。接着,详细介绍了SAE的功能与优势,包括简化部署流程、支持多种弹性策略和提供丰富的运维工具。SAE的收费模式主要基于CPU和内存使用量,辅以请求数和流量计费,用户可以选择按量付费或预付费资源包。最后,通过极氪汽车、南瓜电影、视野数科和SKG等实际案例,展示了SAE在不同行业的应用效果。
本节介绍SAE产品的部署方式,分为一键部署和手动部署。一键部署通过阿里云ROS平台快速拉起高可用方案所需资源,适合快速搭建环境;手动部署则需进入SAE控制台进行详细配置,适用于自定义应用部署。两者均支持多种部署方式,如源码仓库、镜像等,并提供灵活的资源配置选项。部署完成后需及时删除资源以避免费用产生。SAE支持HTTP和HTTPS协议,适合长时间运行的微服务和Web应用,而FC(函数计算)更适合短时、高并发的任务处理。
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
本方案利用函数计算的无服务器架构,您可以在函数计算控制台选择魔搭(ModelScope)开源大模型应用模板;同时,我们将利用文件存储 NAS ,为应用服务所需的大模型和相关文件提供一个安全的存储环境;最终通过访问提供的域名进行模型的调用与验证。仅需三步,即可玩转目前热门 AI 大模型。
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
本文介绍了如何结合阿里云百炼和魔笔平台,快速构建一个智能化的专属知识空间。通过利用DeepSeek R1等先进推理模型,实现高效的知识管理和智能问答系统。 5. **未来扩展**:探讨多租户隔离、终端用户接入等高级功能,以适应更大规模的应用场景。 通过这些步骤,用户可以轻松创建一个功能全面、性能卓越的知识管理系统,极大提升工作效率和创新能力。