对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。
在业务场景中,日志数据可能存储在日志服务 Project 的不同 Logstore/MetricStore 中或不同地域的 Project 中。日志服务的数据集(StoreView)功能支持跨地域、跨 Store 联合查询和分析,让用户基于数据集就能高效便捷地查询分析全地域的数据,真正做到数据分析不受地域边界的限制。
阿里云 AI 搜索开放平台面向企业及开发者提供丰富的组件化AI搜索服务,本文将重点介绍基于AI搜索开放平台内置的 DeepSeek-R1 系列大模型,如何搭建 Elasticsearch AI Assistant。
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
容管理系统是很常见的一种web应用场景,可以用到个人独立站,企业官网展示等场景,具有很高的实用价值,一个标准的内容管理系统主要由三个部分组成 主站展示部分、后台管理系统、API接口服务,本篇文章会以一个已有内容管理系统的Serverless架构重构展开,介绍改造的基本思路,改造细节,以及性能优化业务可观测设计等。涉及大家关心的Serverless生产遇到的一些问题,比如数据库、日志、动静态分离、调试、维护、灰度方案等。最真实的展现Serverless架构的实施落地细节。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
DDL是数据库所有SQL操作中最繁重的一种,本文总结介绍了云原生数据库PolarDB中DDL全链路MDL锁治理的经验和进展,持续优化用户的使用体验,为用户打造最佳的云原生数据库。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。