本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。
无论是PolarDB MySQL兼容MySQL语法的SQL执行功能,还是其特有的OLAP分析与AI能力,通过MCP协议向LLM开放接口后,显著降低了用户使用门槛,更为未来基于DB-Agent的智能体开发奠定了技术基础
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
通过AI技术,即使不编写代码也能高效开发项目。从生成诗朗诵网页到3D游戏创建,这些令人惊叹的操作如今触手可及。经过摸索,我利用AI成功上线了个人站点:https://koi0101-max.github.io/web。无需一行代码,借助强大的工具即可实现创意,让开发变得简单快捷!
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
最近,通义灵码上线 MCP(ModelScope Cloud Platform)功能,从之前代码生成及修改的基础功能,到可以使用MCP服务连接更多功能,开发者可以实现从 代码爬取、模型推理到应用部署