MaxCompute推出新语法 - PIVOT/UNPIVOT:通过PIVOT关键字基于聚合将一个或者多个指定值的行转换为列;通过UNPIVOT关键字可将一个或者多个列转换为行。以更简洁易用的方式满足行转列和列转行的需求,简化了查询语句,提高了广大大数据开发者的生产力。
本文将会分享Hologres RoaringBitmap 方案在画像分析的应用实践,实现更快更准的画像分析。
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
本文主要介绍曹操出行实时计算负责人林震,基于 Hologres+Flink 的曹操出行实时数仓建设的解决方案分享。
随着业务在金融、保险和商城领域的不断扩展,众安保险建设 CDP 平台以提供自动化营销数据支持。早期 CDP 平台依赖于 Spark + Impala + Hbase + Nebula 复杂的技术组合,这不仅导致数据分析形成数据孤岛,还带来高昂的管理及维护成本。为解决该问题,众安保险引入 Apache Doris,替换了早期复杂的技术组合,不仅降低了系统的复杂性,打破了数据孤岛,更提升了数据处理的效率。
代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。