官方博客-第14页-阿里云开发者社区

  • 2024-05-15
    73775

    通义灵码技术解析,打造 AI 原生开发新范式

    本文第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。

  • 实时数仓Hologres OLAP场景核心能力介绍

    Hologres提供统一、实时、弹性、易用的一站式实时数仓引擎,解决复杂OLAP难题。

  • 2024-10-22
    1183

    最佳实践:通义灵码生成单元测试,让单测更简单

    本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。

    1,183
  • 2025-02-14
    1433

    DeepSeek-V3 高效训练关键技术分析

    本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。

    1,433
  • 2025-03-06
    1373

    一招解决数据库中报表查询慢的痛点

    本文旨在解决传统数据库系统如PostgreSQL在处理复杂分析查询时面临的性能瓶颈问题。

    1,373
  • 2025-04-17
    680

    MCP 的 AI 好搭档

    本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。

    680
  • 2025-04-24
    1159

    为什么一定要做Agent智能体?

    作者通过深入分析、理解、归纳,最后解答了“为什么一定要做Agent”这个问题。

  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 1
    ...
    13
    14
    15
    ...
    62
    到第