今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
ChatTTS是一款针对对话场景的文本转语音模型,支持英中两种语言,训练数据超过10万小时。ChatTTS可通过WebUI和API访问。阿里云的资源编排服务(ROS)提供了一键部署ChatTTS到云端的方案,用户只需在ROS控制台配置模板参数,如区域和实例类型,即可完成部署。部署后,从资源栈输出获取ChatTTS服务地址。ROS利用IaC理念自动化部署云资源和应用,提高了部署效率和稳定性。
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。
通义千问最新推出的QwQ-32B推理模型,拥有320亿参数,性能媲美DeepSeek-R1(6710亿参数)。QwQ-32B支持在小型移动设备上本地运行,并可将企业大模型API调用成本降低90%以上。本文介绍了如何通过Higress AI网关实现DeepSeek-R1与QwQ-32B之间的无缝切换,涵盖环境准备、模型接入配置及客户端调用示例等内容。此外,还详细探讨了Higress AI网关的多模型服务、消费者鉴权、模型自动切换等高级功能,帮助企业解决TPS与成本平衡、内容安全合规等问题,提升大模型应用的稳定性和效率。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
资源编排服务(Resource Orchestration Service, 简称ROS)是阿里云提供的一项简化云计算资源管理的服务。您可以遵循ROS定义的模板规范编写资源栈模板,在模板中定义所需的云计算资源(例如ECS实例、RDS数据库实例)、资源间的依赖关系等。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
本文写给有一定编程基础的学习者,得以入门 源码级 开发Agentscope应用,并上线创空间,参加AgentScope的应用开发挑战赛。