在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
Mistral AI在3月24日突然发布并开源了 Mistral 7B v0.2模型,有如下几个特点
OpenKruise 在 2024.3 发布了最新的 v1.6 版本(ChangeLog),本文对新版本的核心特性做整体介绍。