阿里云发布的QwQ-32B模型通过强化学习显著提升了推理能力,核心指标达到DeepSeek-R1满血版水平。用户可通过阿里云系统运维管理(OOS)一键部署OpenWebUI+Ollama方案,轻松将QwQ-32B模型部署到ECS,或连接阿里云百炼的在线模型。整个过程无需编写代码,全部在控制台完成,适合新手操作。
本文主要介绍通过KMS密钥管理服务产生的密钥对敏感的AK等数据进行加密之后可以有效解决泄漏带来的安全风险问题,其次通过KMS凭据托管的能力直接将MSE的主AK进行有效管理,保障全链路无AK的业务体验,真正做到安全、可控。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
针对Springboot里面使用开源工具使用加解密,替换成阿里云KMS产品进行加解密;
在阿里云平台上,您只需十分钟,无需任何编码,即可在企业微信上为您的组织集成一个具备大模型能力的AI助手。此助手可24小时响应用户咨询,解答各类问题,尤其擅长处理私域问题,从而成为您企业的专属助手,有效提升用户体验及业务竞争力。
本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。
本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。