多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
本文旨在介绍钉钉 Android 团队死循环检测工具建设的思路和典型案例的修复历程。希望通过此次分享,对同样面临类似死循环问题的团队能够有所启发。
本文整理自阿里云高级专家喻良,在 Flink Forward Asia 2023 主会场的分享。
Lazada选品平台包含全网商家、商品的圈选,通过Hologres RoaringBitmap能力帮助业务突破选品池20w大小限制,6000+选品池调度完成由12h下降至1h,单个选品池调度时间由90s下降至2s。
本文展示了 Dubbo3 triple 协议是如何简化从协议规范与实现上简化开发测试、入口流量接入成本的,同时提供高性能通信、面向接口的易用性编码。