官方博客-第23页-阿里云开发者社区

  • 2024-07-22
    16464

    超越流水线,企业研发规范落地新思路

    一文详解研发规范的目标、常见误区、选型方法与常见最佳实践。

    16,464
  • 2024-09-05
    412

    软件测试之道 -- 做一个有匠心的程序员

    作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。

    412
  • 2024-09-05
    986

    RAG效果优化:高质量文档解析详解

    本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。

  • 2024-09-11
    340

    表格存储低成本向量检索服务助力 AI 检索

    本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。

    340
  • 2024-11-21
    1421

    剖析大模型连“Strawberry”的“r”都数不对的原因

    本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。

    1,421
  • 2024-12-20
    367

    尽享红利,Serverless构建企业AI应用方案与实践

    本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。

  • 2025-01-06
    341

    OpenAI 宕机思考丨Kubernetes 复杂度带来的服务发现系统的风险和应对措施

    Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。

    341
  • 2025-02-20
    665

    大模型推理服务全景图

    推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。

    665
  • 2025-02-21
    910

    基于LLM打造沉浸式3D世界

    阿里云数据可视化产品DataV团队一直在三维交互领域进行前沿探索,为了解决LLMs与3D结合的问题,近期在虚幻引擎内结合通义千问大模型家族打造了一套基于LLM的实时可交互3D世界方案,通过自然语言来与引擎内的3D世界进行交互。

    910
  • 1
    ...
    22
    23
    24
    ...
    56
    到第