 
              本文介绍了为何需要WolframAlpha及其在解决大语言模型“幻觉”问题上的优势。大型语言模型如GPT-4虽在自然语言处理方面表现出色,但在科学与数学问题上常出错。WolframAlpha凭借其强大的计算能力和广泛的知识库,能准确处理复杂问题。Higress MCP市场已上线WolframAlpha LLM API,支持多种调用方式,并提供每月10次免费试用。配置流程包括获取API工具、安装Lobechat及配置Higress MCP插件。测试案例显示,WolframAlpha在数学推理、日常计算和图像绘制等方面表现优异,未来结合更多服务将推动AI技术发展。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
在本文中,作者介绍了 Lingma SWE-GPT,一款专为解决复杂软件改进任务设计的开源大型语言模型系列。
对于正在使用 GitLab 国际站托管代码的企业和研发团队,除迁移至极狐 GitLab 外,国内其他主流的 DevOps 平台也具有完备的产品能力,为开发者提供了更多的选择。其中,阿里云云效也提供了针对常见代码托管平台如 GitHub、GitLab 简单便捷的迁移方案,帮助用户快速完成核心代码数据的迁移,确保代码资产安全。
本方案将运用函数计算 FC,构建一套高可用性的 Web 服务,以满足用户多样化的需求。当用户发起请求时,系统内部会自动将包含文本和提示词的信息传递给百炼模型服务,百炼平台将根据后台配置调用相应的大模型服务,对文本数据进行智能识别与解析,最终将总结结果返回给用户。
本次分享,主题是利用通义灵码提升前端研发效率。分享内容主要包括以下几部分:首先,我将从前端开发的角度介绍对通义灵码的基本认识;其次,我将展示通义灵码在日常研发中的应用案例;然后,我将通过实例说明,良好的设计能够显著提升通义灵码的效果。在第四个部分,我将介绍通义灵码的企业知识库以及如何利用 RAG 构建团队智能研发助手。最后,我将总结本次分享并展望未来方向。