本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
本文主要介绍通过KMS密钥管理服务产生的密钥对敏感的AK等数据进行加密之后可以有效解决泄漏带来的安全风险问题,其次通过KMS凭据托管的能力直接将MSE的主AK进行有效管理,保障全链路无AK的业务体验,真正做到安全、可控。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
本文整理自阿里云高级专家喻良,在 Flink Forward Asia 2023 主会场的分享。
目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。背景介绍日志的形式往往多种多样,如果只是简单的读入日志数据,将很难进行搜索、分析及可视化。将原始的日志数据解析为结构化的数据,将大幅提升数据的可用性,方便用户进行快捷的“字段-值”的查询和分析。最基础的解...