官方博客-第5页-阿里云开发者社区

  • 2025-05-22
    1287

    自媒体创作场景实践|通义千问3 + MCP=一切皆有可能

    本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。

    1,287
  • 2024-09-02
    1863

    通义灵码使用安装教程,3 分钟快速上手体验

    通义灵码,是阿里云与通义实验室联合出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云的云服务使用场景调优,助力开发者高效、流畅的编码。目前个人版免费使用。

  • 2025-03-27
    1098

    大模型联网搜索的短板与突破之路

    本文作者详细分析了当前大模型在联网搜索功能中存在的几个主要问题,并提供了具体的案例和解决方案。

    1,098
  • 2024-08-16
    16219

    RAG效果优化:高质量文档解析详解

    本文介绍了如何通过高质量的文档解析提升RAG系统整体的效果。

  • 2024-09-04
    2295

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,295
  • 2024-05-15
    68055

    通义千问API:让大模型写代码和跑代码

    基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。

    68,055
  • 2024-05-15
    239989

    一文掌握大模型提示词技巧:从战略到战术

    本文将用通俗易懂的语言,带你从战略(宏观)和战术(微观)两个层次掌握大模型提示词的常见技巧,真正做到理论和实践相结合,占领 AI 运用的先机。

    239,989
  • 2024-05-15
    15127

    Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估

    Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。

    15,127
  • 2024-09-03
    1511

    速成RAG+Agent框架大模型应用搭建

    本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。

    1,511
  • 1
    ...
    4
    5
    6
    ...
    59
    到第