上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。
本文从思考日志的本质开始,一览业界对日志使用的最佳实践,然后尝试给出分布式存储场景下对日志模块的需求抽象,最后是技术探索路上个人的一点点感悟。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
很多平台类应用或系统(如电商CRM平台、仓库订单平台等等),它们的服务模型是围绕用户维度(这里的用户维度可以是一个卖家或品牌,可以是一个仓库,等等)展开的。因此,这类型的平台业务,为了支持业务系统的水平扩展性,业务的数据库通常是按用户维度进行水平切分。