本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。
Kubernetes 作为当今云原生业界标准,具备良好的生态以及跨云厂商能力。Kubernetes 很好的抽象了 IaaS 资源交付标准,使得云资源交付变的越来越简单,与此同时用户期望更多的聚焦于业务自身,做到面向应用交付,Serverless 理念也因此而生。 那么如何通过原生 k8s 提供Serverless 能力?如何实现GPU等异构资源按需使用?这里给大家介绍一下我们在Serverless Kubernetes 开发实践:异构资源,按需使用。
本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享
NSDI‘24于4月16-18日在美国圣塔克拉拉市举办,阿里云飞天洛神云网络首次中稿NSDI,两篇论文入选。其中《LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant Multi-Service Edge Clouds》提出超融合网关LuoShen,基于Tofino、FPGA和CPU的新型硬件形态,将公有云VPC设施部署到边缘机柜中,实现小型化、低成本和高性能。该方案使成本降低75%,空间占用减少87%,并提供1.2Tbps吞吐量,展示了强大的技术竞争力。
本方案利用函数计算 FC 部署 Web 应用,调用百炼模型服务实现 PPT 到视频的自动转换。视觉模型智能理解 PPT 图文内容,快速生成相匹配的解说词;文本模型对解说词进行优化,提高其可读性和吸引力;语音模型则根据解说词生成生动流畅的旁白音频。整个过程高度集成,只需一键操作,系统即可自动整合图片、文本和音频素材,快速生成对应讲解视频。
阿里云发布的QwQ-32B模型通过强化学习显著提升了推理能力,核心指标达到DeepSeek-R1满血版水平。用户可通过阿里云系统运维管理(OOS)一键部署OpenWebUI+Ollama方案,轻松将QwQ-32B模型部署到ECS,或连接阿里云百炼的在线模型。整个过程无需编写代码,全部在控制台完成,适合新手操作。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。