官方博客-第6页-阿里云开发者社区

  • 2023-07-28
    1382

    MaxCompute ODPS重装上阵, IF ELSE分支语句

    MaxCompute通过脚本模式支持IF ELSE分支语句,让程序根据条件自动选择执行逻辑,支持更好的处理因数据不同而需要采用不同策略的业务场景产生的复杂SQL,提高开发者编程的灵活性!

    1,382
  • 2024-05-15
    112874

    浅析MySQL代价估计器

    代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。

    112,874
  • 1557

    拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力

    针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。

  • 1015

    FlinkSQL 的行级权限解决方案及源码

    FlinkSQL的行级权限解决方案及源码,支持面向用户级别的行级数据访问控制,即特定用户只能访问授权过的行,隐藏未授权的行数据。此方案是实时领域Flink的解决方案,类似离线数仓Hive中Ranger Row-level Filter方案。

  • 2024-08-06
    1395

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,395
  • 1075

    拥抱Data+AI|解码Data+AI助力游戏日志智能分析

    「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测

  • 2023-08-09
    51666

    PolarDB-X 针对跑批场景的思考和实践

    金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。

  • 2024-05-15
    133478

    走进RDS之MySQL内存分配与管理(上)

    MySQL的内存分配、使用、管理的模块较多,本篇文章主要介绍InnoDB层和SQL层内存分配管理器,主要包括ut_allocator、mem_heap_allocator和MEM_ROOT,代码版本主要基于8.0.25。

    133,478
  • 1
    ...
    5
    6
    7
    ...
    26
    到第
    6/26