本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。
为了更好的进行 Go 应用微服务治理,提高研发效率和系统稳定性,本文将介绍 MSE 微服务治理方案,无需修改业务代码,实现治理能力。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
阿里云 ARMS 用户体验监控(RUM)推出了针对原生鸿蒙应用的 SDK。SDK 使用 ArkTS 语言开发,支持页面采集、资源加载采集、异常采集及自定义采集等功能,能够全面监控鸿蒙应用的表现。集成简单,只需几步即可将 SDK 接入项目中,为鸿蒙应用的开发者提供了强有力的支持。
在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。