本次课程由阿里云消息队列产品专家杨文婷分享,主题为高弹性、低成本的云消息队列RabbitMQ。内容涵盖四个方面:1) 产品优势,包括兼容开源客户端、解决稳定性痛点和高弹性低成本;2) 架构实现原理,如分布式架构和弹性调度系统;3) Serverless系列带来的按量付费模式和资源池优势;4) Serverless适用场景,如开发测试环境、峰谷流量业务等。最后解答了关于顺序消费、与普通MQ对比、自动扩容及API支持等常见问题。
本次方案将帮助大家实现使用阿里云产品函数计算FC,只需简单操作,就可以快速配置ComfyUI大模型,创建出你的专属毛茸茸萌宠形象。内置基础大模型+常用插件+部分 Lora,以风格化图像生成只需用户让体验键配置简单方便,后续您可以根据自己的需要更换需要的模型、Lora、增加插件。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
网络监控与分析在保证网络可靠性、优化用户体验和提升运营效率方面发挥着不可或缺的作用,对于出海企业应对复杂的网络环境和满足用户需求具有重要意义,为出海企业顺利承接泼天流量保驾护航。
本文是系列文章的第一篇,介绍第一个重要话题:“数据库的分布式事务”,这也是目前普通用户面对分布式数据库产品介绍问的最多的一个内容,如何有效评测分布式事务也是一个非常重要的能力。致敬同行,我们将PolarDB-X事务架构设计上的一些思考和测试方式,做了整理和梳理,期望能对大家更好的理解分布式事务的测试有所帮助。
本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。