本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
本文是[全景剖析容器网络数据链路]第三部分,主要介绍Kubernetes Terway ENIIP模式下,数据面链路的转转发链路。
MSE 云原生网关默认提供了丰富的 Metrics 指标大盘,配合阿里云 Prometheus 监控提供开箱即用的完整可观测性能力,能够帮助用户快捷、高效的搭建自身的微服务网关与对应的可观测体系。