本篇文章通过几个技术点说明日志记录过程中的性能实践,计算机领域的性能往往都遵循着冰山法则,即你能看得见的、程序员能感知的只是其中的一小部分,还有大量的细节隐藏在冰山之下。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
RocketMQ 5.0 是一款云原生的消息中间件,旨在覆盖更多业务场景。它针对国内企业在数字化转型中面临的多场景消息处理需求,提供了一体化的解决方案。
本文旨在介绍钉钉 Android 团队死循环检测工具建设的思路和典型案例的修复历程。希望通过此次分享,对同样面临类似死循环问题的团队能够有所启发。
讲述消息系统在现代化演进中软硬一体化,百万队列,分级存储等诸多竞争力特性的诞生和落地效果。探讨业界领先的 Shared-Log 存储计算分离,FFM与协程,RDMA 传输,列式存储等技术,将消息向流的领域延伸。
日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。