背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版高效率解决用户画像、实时精准营销类业务需求测试...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 rum 实现高效率搜索和高效率排序的解决方案...
当前PolarDB-X正在全面对接阿里云 ''数据库自治服务 DAS",PolarDB-X限流能力将会以白屏化的方式提供给用户,经一步提升用户体验,降低使用门槛。
通过EMR+DLF数据湖方案,可以为企业提供数据湖内的统一的元数据管理,统一的权限管理,支持多源数据入湖以及一站式数据探索的能力。本方案支持已有EMR集群元数据库使用RDS或内置MySQL数据库迁移DLF,通过统一的元数据管理,多种数据源入湖,搭建高效的数据湖解决方案。
本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 parray_gin 实现高效率 数组、JS...
微服务运行时稳定性的问题微服务的稳定性一直是开发者非常关注的话题。随着业务从单体架构向分布式架构演进以及部署方式的变化,服务之间的依赖关系变得越来越复杂,业务系统也面临着巨大的高可用挑战。大家可能都经历过以下的场景:演唱会抢票瞬间洪峰流量导致系统超出最大负载,load 飙高,用户无法正常下单;在线选...