官方博客-第81页-阿里云开发者社区

  • 2024-05-15
    317

    Serverless 应用优化四则秘诀

    Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。

  • 2024-05-15
    295

    通过定时SQL提取阿里云API网关访问日志指标

    背景阿里云API网关服务提供API托管服务,提供了强大的适配和集成能力,可以将各种不同的业务系统API实现统一管理。API网关同时支持将API访问日志一键存储到日志服务,通过日志服务强大的查询分析能力,用户可以针对访问日志自定义计算多种指标,监测服务运行情况。继而通过定时SQL将结果指标直接存储到时...

    295
  • 2024-05-15
    399

    日志服务 Scan 功能工作机制与最佳实践

    大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...

    399
  • 2024-05-15
    405

    PolarDB 开源版 使用PostGIS 以及泰森多边形 解决 零售、配送、综合体、教培、连锁店等经营|通信行业基站建设功率和指向 的地理最优解问题

    背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 以及泰森多边形 解决 "零售、...

    405
  • 2024-05-15
    518

    长路漫漫, 从Blink-tree 到Bw-tree (上)

    在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...

    518
  • 2024-05-15
    267

    Serverless数据仓库实践,助力企业敏捷数据分析

    现代的云原生数据仓库架构传统的云数据仓库需要用户购买一个预置的数据资源进行7*24的长时间运行;这种方式对于当下崇尚敏捷创业者来说使用负担较大,对于探索类或成长型业务缺少灵活的使用模式以满足低成本数据分析诉求;随着这个问题被越来越多的企业关注,Serverless的使用方式开始逐渐被各大厂商提及,B...

    267
  • 2024-05-15
    234

    20行代码:Serverless架构下用Python轻松搞定图像分类和预测

    本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。

  • 2024-05-15
    451

    Serverless与IoT实践:为智能音箱赋能

    本文通过与IoT能力进行结合,让Serverless架构在智能音箱中,发挥有趣的作用。

  • 2024-05-15
    347

    函数计算 HTTP 触发器支持异步,解放双手搭建 Web 服务

    当前阿里云函数计算支持两种类型的函数:事件函数和 HTTP 函数。其中 HTTP 函数结合 HTTP 触发器,能够支持用户直接通过 HTTP 请求利用 Restful API 的方式发起函数调用;通过这种方式,用户无需集成函数计算提供的 SDK 就能实现函数调用,更好地同已有系统的组件及 Web 服...

  • 1
    ...
    80
    81
    82
    ...
    85
    到第