本文介绍了Serverless的发展历程及SAE(Serverless Application Engine)产品。首先,回顾了云计算从物理机、虚拟机到容器化再到Serverless的演进过程,并解释了Serverless的核心特点:无需管理底层资源、自动弹性伸缩、聚焦业务价值。接着,详细介绍了SAE的功能与优势,包括简化部署流程、支持多种弹性策略和提供丰富的运维工具。SAE的收费模式主要基于CPU和内存使用量,辅以请求数和流量计费,用户可以选择按量付费或预付费资源包。最后,通过极氪汽车、南瓜电影、视野数科和SKG等实际案例,展示了SAE在不同行业的应用效果。
本节介绍SAE产品的部署方式,分为一键部署和手动部署。一键部署通过阿里云ROS平台快速拉起高可用方案所需资源,适合快速搭建环境;手动部署则需进入SAE控制台进行详细配置,适用于自定义应用部署。两者均支持多种部署方式,如源码仓库、镜像等,并提供灵活的资源配置选项。部署完成后需及时删除资源以避免费用产生。SAE支持HTTP和HTTPS协议,适合长时间运行的微服务和Web应用,而FC(函数计算)更适合短时、高并发的任务处理。
本方案利用函数计算的无服务器架构,您可以在函数计算控制台选择魔搭(ModelScope)开源大模型应用模板;同时,我们将利用文件存储 NAS ,为应用服务所需的大模型和相关文件提供一个安全的存储环境;最终通过访问提供的域名进行模型的调用与验证。仅需三步,即可玩转目前热门 AI 大模型。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
客户机房迁移过程中,发现不同 Pod 副本耗时前后相差 5 倍,本文介绍如何通过 ARMS 代码热点功能进行快速定位。
本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
本文介绍了如何结合阿里云百炼和魔笔平台,快速构建一个智能化的专属知识空间。通过利用DeepSeek R1等先进推理模型,实现高效的知识管理和智能问答系统。 5. **未来扩展**:探讨多租户隔离、终端用户接入等高级功能,以适应更大规模的应用场景。 通过这些步骤,用户可以轻松创建一个功能全面、性能卓越的知识管理系统,极大提升工作效率和创新能力。