官方博客-第7页-阿里云开发者社区

  • 2025-04-11
    1177

    AI开源框架:让分布式系统调试不再"黑盒"

    Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。

  • 2025-07-21
    791

    通义灵码保姆级教程:从数据读取、清洗、结合大模型分析、可视化、生成报告全链路

    本课程通过通义灵码实现零代码数据分析全流程,涵盖数据读取、清洗、可视化、报告生成及内容仿写,无需编程基础,轻松掌握从CSV导入到PDF报告输出的实战技能。

  • 6070

    GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践

    本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。

  • 2025-09-24
    388

    配置驱动的动态 Agent 架构网络:实现高效编排、动态更新与智能治理

    本文所阐述的配置驱动智能 Agent 架构,其核心价值在于为 Agent 开发领域提供了一套通用的、可落地的标准化范式。

  • 2024-05-15
    93598

    当 OpenTelemetry 遇上阿里云 Prometheus

    本文以构建系统可观测为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理以及介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry及相关落地实践案例。

  • 2024-09-03
    3418

    【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享

    本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。

  • 2025-03-21
    1170

    监控vLLM等大模型推理性能

    本文将深入探讨 AI 推理应用的可观测方案,并基于 Prometheus 规范提供一套完整的指标观测方案,帮助开发者构建稳定、高效的推理应用。

    1,170
  • 2024-05-15
    142838

    深度剖析 RocketMQ 5.0,架构解析:云原生架构如何支撑多元化场景?

    了解 RocketMQ 5.0 的核心概念和架构概览;然后我们会从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;学习 RocketMQ 如何实现数据的存储,数据的高可用,如何利用云原生存储进一步提升竞争力。

    142,838
  • 2024-06-24
    53216

    从云原生视角看 AI 原生应用架构的实践

    本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。

    53,216
  • 1
    ...
    6
    7
    8
    ...
    79
    到第