随着互联网从 Web 2.0 迈进到 AI 时代,用户和互联网的交互方式,AI 时代下互联网的内容生产流程都发生了显著的转变,这对基础设施(Infra)提出了新的诉求,也带来了新的机遇。Infra 包含的内容非常丰富,本文仅从网关层面分享笔者的所见所感所悟。
本文首先介绍了遗留代码的概念,并对遗留代码进行了分类。针对不同类型的遗留代码,提供了相应的处理策略。此外,本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
这篇文章旨在提供技术深度和实践指南,帮助开发者理解并应用这项创新技术来提高Golang应用的监控与服务治理能力。在接下来的部分,我们将通过一些实际案例,进一步展示如何在不同场景中应用这项技术,提供更多实践启示。