本文主要就Dubbo应用如何接入服务网格、获得各项云原生能力进行了探讨,并提出了最佳实践以及过渡两种实践场景。我们首先推荐您使用Dubbo社区提供的最佳实践场景来接入服务网格,在必要时可以通过过渡方案来向最佳实践方案逐步实现过渡。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
用户将 RDS MySQL 实例从 5.6 升级到 8.0 后,发现相同 SQL 的执行时间增长了十几倍。本文就该问题逐步展开排查,并最终定位根因。
本次实验主要体验RDS通用云盘的三项核心能力:IO加速、IO突发和数据归档。首先创建实验资源,包括RDS MySQL实例和ECS实例,耗时约5分钟。接着通过sysbench导入数据并配置安全设置。 在体验阶段,我们对比了开启和关闭IO加速及IO突发功能对RDS性能的影响,观察到QPS有显著差异。最后,通过将数据从云盘迁移到OSS中,展示了冷存层的数据归档功能,并进行RDS硬盘缩容,验证了其成本优势。整个实验过程详细记录了每一步操作,确保用户能直观感受到RDS通用云盘带来的性能提升和成本优化。
阿里云云消息队列 Kafka 版 Serverless 系列凭借其卓越的弹性能力,为道旅科技提供了灵活高效的数据流处理解决方案。无论是应对突发流量还是规划长期资源需求,该方案均能帮助企业实现资源动态调整和成本优化,同时保障业务的高可用性和连续性。