本文基于常见的服务调用场景,以Ribbon负载均衡组件为例,展示了微服务洞察能力能够在关键的位置为我们还原与记录丰富的现场信息,使得原有的黑盒场景能够便捷直观地被观测到。在微服务架构下,类似的不便观测的重要场景还有非常多,都可以借助微服务洞察能力来监测或是在异常时辅助排查。同时,全链路灰度是微服务治理中比较重要的一个场景,我们在落地全链路灰度的过程中最让人头大的两个问题就是流量路由不生效以及流量逃逸,我们借助于微服务洞察能力可以快速定位与解决全链路灰度相关的问题。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。
Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
为什么需要微服务治理与 OpenSergo?在经典微服务架构中,我们通常将服务调用中各角色划分为三部分:服务提供者、服务消费者、注册中心。经典的微服务架构可以解决微服务能调通、可以运行起来的问题。随着分布式服务架构的不断演进、业务规模的扩张,诸多复杂的稳定性与易用性问题显现出来,这时候就需要一些手段...