SPL 算子不仅完成了旧版 DSL 加工向更强大语法和算子形式的过渡,更将性能调优和场景适配做到了极致,解锁了时序预测和日志分析的更多可能性。作为重要的基础设施模块,SPL 加工能力将持续优化演进。未来的规划将继续聚焦通用性、性能与产品能力,为用户提供更加强大、灵活的技术支持。
无论是使用 Nacos-Controller 实现配置的双向同步,还是直接在应用中接入 Nacos SDK 以获得更高级的配置管理特性,都能显著提升配置管理的灵活性、安全性和可维护性。使用 Nacos,您能够更好地管理和优化您的应用配置,从而提高系统的稳定性和可靠性。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。
Spring Cloud Alibaba 发布了 Scheduling 任务调度模块 [#3732]提供了一套开源、轻量级、高可用的定时任务解决方案,帮助您快速开发微服务体系下的分布式定时任务。
从花果山的灵石出世,到取经路上的九九八十一难,再到大闹天宫的惊心动魄……这些耳熟能详的西游场景,如今都能通过 Flux 模型,以超乎想象的细节和真实感呈现在你眼前。本次实验在函数计算中内置的 flux.1-dev-fp8 大模型,搭配 Lora 模型,无需复杂的配置,一键部署,你就能成为这场视觉盛宴的创造者。