随着云计算的普及,越来越多的传统企业客户也在选择把IDC的业务系统搬到公共云上,实现更大的弹性、更强的灵活性、更高的性价比。但与泛互联网型企业的轻资产相比,传统企业的云下IT规模较大,有比较沉重历史包袱重,以及各种行业安全规范的约束,所以对于网络的规划设计、部署使用、运维管理都有自己的要求,仅仅具备云产品的初级使用能力已不能满足实际使用需求。企业级云上网络架构的重点是帮助企业用户更高效地搭建安全可靠的云上网络架构,本文主要针对企业客户在云上的南北向流量(访问internet/被internet用户访问)和东西向流量(企业内部VPC互访)的互访、安全、管理等多方面需求,利用CEN-TR(云企业网企业版)实现云上东西向+南北向流量安全和统一公网出口的最佳实践。
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
Apache Dubbo 3.3.3(即将发布)实现了与 OpenAPI 的深度集成,通过与 OpenAPI 的深度集成,用户能够体验到从文档生成到接口调试、测试和优化的全流程自动化支持。不论是减少手动工作量、提升开发效率,还是支持多语言和多环境,Dubbo 3.3.3 都展现了其对开发者体验的极大关注。结合强大的 Mock 数据生成和自动化测试能力,这一版本为开发者提供了极具竞争力的服务治理解决方案。如果你正在寻找高效、易用的微服务框架,Dubbo 3.3.3 将是你不容错过的选择。
DeepSeek加速了模型平权,大模型推理需求激增,性能提升主战场从训练转向推理。SSE(Server-Sent Events)和WebSocket成为大模型应用的标配网络通信协议。SSE适合服务器单向推送实时数据,如一问一答场景;WebSocket支持双向实时通信,适用于在线游戏、多人协作等高实时性场景。两者相比传统HTTPS协议,能更好地支持流式输出、长时任务处理和多轮交互,满足大模型应用的需求。随着用户体量扩大,网关层面临软件变更、带宽成本及恶意攻击等挑战,需通过无损上下线、客户端重连机制、压缩算法及安全防护措施应对。
探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。