多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
本文介绍了Higress,一个支持基于WebAssembly (WASM) 的边缘计算网关,它允许用户使用Go、C++或Rust编写插件来扩展其功能。文章特别讨论了如何利用Redis插件实现限流、缓存和会话管理等高级功能。
鸿蒙操作系统(HarmonyOS)上的日志服务(SLS)SDK 提供了针对 IoT、移动端到服务端的全场景日志采集、处理和分析能力,旨在满足万物互联时代下应用的多元化设备接入、高效协同和安全可靠运行的需求。
本文介绍了 SLS 基本能力,并和开源自建 ELK 做了对比,可以看到 SLS 相比开源 ELK 有较大优势。
今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
在本文中,作者探讨了ZooKeeper(ZK)的一个内存占用问题,特别是当有大量的Watcher和ZNode时,导致的内存消耗。
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。