目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
大模型不知不觉已经火了快一年了,拥有一个能够随时对话使用的大模型已经成为不少人的刚需。然而,最大的问题可能是如何访问和调用对话模型。如果,我是说如果,能在您的即时通讯软件钉钉中直接与通义千问对话,是不是会让这一切更方便快捷?! 按照传统方案,我们要实现上述场景可能需要非常繁琐的接入步骤,甚至还需要自行开发很多代码,这样的准入门槛实在,太!高!啦! 而今天,我要向各位隆重介绍一个新的解决方案——阿里云计算巢AppFlow应用与数据集成平台,无需任何代码开发,简单快捷,自动连接企业内部应用与外部应用或数据,搭建企业的自动化服务流程,帮助个人、企业降低了集成实施的周期和成本。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。