本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
为了展现 LoongCollector 的卓越性能,本文通过纵向(LoongCollector 与 iLogtail 产品升级对比)和横向(LoongCollector 与其他开源日志采集 Agent 对比)两方面对比,深度测评不同采集 Agent 在常见的日志采集场景下的性能。
本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
本文主要介绍Ganos实时热力聚合查询并动态输出热力瓦片能力,依托阿里云PolarDB PostgreSQL产品、ADB PostgreSQL和RDS PostgreSQL 三款数据库建设输出。
本文介绍 Higress 将 Wasm 插件的运行时从 V8 切换到 WebAssembly Micro Runtime (WAMR) 的最新进展。
我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。