本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。
本文技术理念的层面了解一下事件驱动的概念。RocketMQ 5.0 在面向云时代的事件驱动架构新推出的子产品 EventBridge,最后再结合几个具体的案例帮助大家了解云时代的事件驱动方案。
本文介绍了如何通过阿里云 MSE 微服务引擎和云效应用交付平台 AppStack 实现灰度发布。
时序引擎在可观测场景中的重要性Metrics作为IT可观测性数据的三剑客之一,是可观测场景的重要组成部分,相比Log、Trace数据,具备成本更低、数据源更丰富、适用面更广的特点,SLS在2年多前发布了时序存储引擎,并完全兼容了Prometheus的语法。目前已经有1万+的用户、10万+的实例,每天...