本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
本文介绍了Spring AI Alibaba MCP的开发与应用,旨在解决企业级AI Agent在分布式环境下的部署和动态更新问题。通过集成Nacos,Spring AI Alibaba实现了流量负载均衡及节点变更动态感知等功能。开发者可方便地将企业内部业务系统发布为MCP服务或开发自己的AI Agent。文章详细描述了如何通过代理应用接入存量业务系统,以及全新MCP服务的开发流程,并提供了完整的配置示例和源码链接。未来,Spring AI Alibaba计划结合Nacos3的mcp-registry与mcp-router能力,进一步优化Agent开发体验。
淘天集团数据开发团队基于Fluss构建新一代实时数仓,解决数据消费冗余、探查困难及大State运维难题。Fluss融合列存与实时更新能力,支持列裁剪、KV点查、Delta Join及湖流一体,显著降低IO与计算资源消耗,提升作业稳定性与数据探查效率。已在淘天AB实验平台落地,覆盖搜索、推荐等核心业务,通过618大促验证,实现千万级流量、秒级延迟,资源消耗降低30%,State缩减超100TB。未来将持续深化湖仓架构,拓展AI场景应用。
本文以构建系统可观测为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理以及介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry及相关落地实践案例。
探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。